Hosoya-Diudea polynomial in hyper structures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between the Hosoya polynomial and the hyper-Wiener index

The Hosoya polynomial of a graph, H(G, z), has the property that its first derivative, evaluated at z = 1, equals the Wiener index, i.e., W(G) = H’(G, 1). In this paper, an equation is presented that gives the hyper-Wiener index, WW(G), in terms of the first and second derivatives of H(G,z). Also defined here is a hyper-Hosoya polynomial, HH(G,r), which has the property WW(G) = HH’(G, l), analo...

متن کامل

Alternating Sums in the Hosoya Polynomial Triangle

The Hosoya polynomial triangle is a triangular arrangement of polynomials where each entry is a product of two polynomials. The geometry of this triangle is a good 1 tool to study the algebraic properties of polynomial products. In particular, we find closed formulas for the alternating sum of products of polynomials such as Fibonacci polynomials, Chebyshev polynomials, Morgan-Voyce polynomials...

متن کامل

The Hosoya-Wiener Polynomial of Weighted Trees

Formulas for the Wiener number and the Hosoya-Wiener polynomial of edge and vertex weighted graphs are given in terms of edge and path contributions. For a rooted tree, the Hosoya-Wiener polynomial is expressed as a sum of vertex contributions. Finally, a recursive formula for computing the Hosoya-Wiener polynomial of a weighted tree is given.

متن کامل

Hosoya polynomial of zigzag polyhex nanotorus

Abstract: The Hosoya polynomial of a molecular graph G is defined as ∑ ⊆ = ) ( } , { ) , ( ) , ( G V v u v u d G H λ λ , where d(u,v) is the distance between vertices u and v. The first derivative of H(G,λ) at λ = 1 is equal to the Wiener index of G, defined as ∑ ⊆ = ) ( } , { ) , ( ) ( G V v u v u d G W . The second derivative of ) , ( 2 1 λ λ G H at λ = 1 is equal to the hyper-Wiener index, d...

متن کامل

The Hosoya polynomial decomposition for hexagonal chains

For a graph G we denote by dG(u, v) the distance between vertices u and v in G, by dG(u) the degree of vertex u. The Hosoya polynomial of G is H(G) = ∑ {u,v}⊆V (G) x dG (u,v). For any positive numbers m and n, the partial Hosoya polynomials of G are Hm(G) = ∑ {u, v} ⊆ V (G) dG (u) = dG (v) = m xdG (u,v), Hmn(G) = ∑ {u, v} ⊆ V (G) dG (u) = m, dG (v) = n xdG (u,v). It has been shown that H(G1) − ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Chemica Iasi

سال: 2013

ISSN: 2067-2446

DOI: 10.2478/achi-2013-0008